自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

chaibubble

但行好事,莫问前程

原创 C++工厂模式

工厂模式分为3种,即简单工厂模式、工厂方法模式、抽象工厂模式,C++的工厂模式主要利用到虚函数。 简单工厂模式 工厂方法模式 抽象工厂模式

2019-08-28 23:40:40 1752 0

原创 目标检测(object detection)系列(十二) CornerNet:anchor free的开端

过去的目标检测算法,two-stage方法从Faster R-CNN开始,one-stage方法从SSD开始,都无一例外的引入了anchor,anchor先验的引入使网络不需要从0直接预测Bounding box,这有利于目标检测器得到更好的效果。但是随着Anchor box的逐渐增多,它变成了目...

2019-08-25 18:09:16 1317 0

原创 目标检测(object detection)系列(十一) RetinaNet:one-stage检测器巅峰之作

在RetinaNet之前,目标检测领域一个普遍的现象就是two-stage的方法有更高的准确率,但是耗时也更严重,比如经典的Faster R-CNN,R-FCN,FPN等,而one-stage的方法效率更高,但是准确性要差一些,比如经典的YOLOv2,YOLOv3和SSD。而RetinaNet的出...

2019-08-24 17:33:22 1842 3

原创 目标检测(object detection)系列(十) FPN:用特征金字塔引入多尺度

SSD算法证明了多层分支对于目标检测的有效性,在此之前two-stage的目标检测方法已经优化改进过很多代,但是一直没有加入多尺度的方法。终于在FPN中,two-stage引入了多尺度,并且在SSD多层分支方法的基础上进一步改进,提出了特征金字塔网络。FPN的论文是《Feature Pyramid...

2019-08-22 14:12:15 2625 2

原创 人脸检测通用评价标准

简介 人脸检测任务应该如何评价 评价标准 二分类的精准率和召回率 人脸检测是目标检测的一个特例,因为目标类别只有一类,剩下的都是背景,所以人脸检测评价标准中会用到些二分类问题的评价,在这里先提一下。 二分类问题最常用的就是精准率和召回率: 精准率代表着预测为正的样本中有多少是正确的; 召回率代表...

2019-08-21 12:21:19 1903 0

原创 目标检测(object detection)系列(九) YOLOv3:取百家所长成一家之言

取百家所长成一家之言是一句书面意思上绝对褒义的话,形容一个论文却有些许的尴尬,但是YOLOv3确实是这样,没什么大的改动和创新点,而是融合借鉴了很多在其他的方案,最后效果还是很好的,文章中自己也提到了:“We made a bunch of little design changes to mak...

2019-08-18 18:54:41 2506 1

原创 如何计算CNN感受野、计算量和模型大小

下面以最经典的AlexNet模型为例子,计算感受野,模型计算量和大小(内存)。下面这张图是AlexNet的结构图,看起来比较直观。 感受野 感受野是检测和分割任务中比较重要的指标,它是一个逐层叠加的过程,计算到最后一层的卷积特征图输出上,它的计算公式是: RFi=RFi−1+(kernelsiz...

2019-08-17 15:45:19 1509 1

原创 如何理解扩张卷积(dilated convolution)

扩张卷积(Dilated Convolution)也被称为空洞卷积或者膨胀卷积,是在标准的卷积核中注入空洞,以此来增加模型的感受野(reception field)。相比原来的正常卷积操作,扩张卷积多了一个参数: dilation rate,指的是卷积核的点的间隔数量,比如常规的卷积操作dilat...

2019-08-16 18:35:15 8628 9

原创 目标检测(object detection)扩展系列(一) Selective Search:选择性搜索算法

在Faster R-CNN算法之前,R-CNN,SPP-Net和Faster R-CNN这些方法中,都用到了SS(Selective Search)算法,它其实是一种区域建议算法为后续的检测任务提供候选框,SS的论文是[《Selective Search for Object Recognitio...

2019-08-14 15:53:31 716 0

原创 目标检测(object detection)系列(六) SSD:兼顾效率和准确性

SDD出现之前,主流的CNN目标检测模型分别是Faster R-CNN和YOLO,Faster R-CNN作为two-stage的代表,具有state of the art的准确性,但是速度偏慢,做不到实时。。YOLO使得目标检测任务one-stage就能完成,在效率上有了明显改善,但是准确性上确...

2019-08-11 22:06:08 1449 0

原创 目标检测(object detection)系列(五)YOLO:目标检测的另一种打开方式

从时间轴上看,YOLO(YOLO v1)的提出在R-CNN,SPP-Net,Fast R-CNN和Faster R-CNN之后,论文题目是《You Only Look Once: Unified, Real-Time Object Detection》,从某种意义上说,YOLO的提出,从另一各方面...

2019-08-09 13:12:01 1537 0

提示
确定要删除当前文章?
取消 删除