自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

chaibubble

但行好事,莫问前程

原创 学习SVM(四) 理解SVM中的支持向量(Support Vector)

我们在开始接触SVM时肯定听到过类似这样的话,决定决策边界的数据叫做支持向量,它决定了margin到底是多少,而max margin更远的点,其实有没有无所谓。 然后一般会配一张图说明一下哪些是支持向量(Support Vector),这个图在之前的学习SVM(二) 如何理解支持向量机的最大分类...

2017-06-25 16:03:43 17615 10

原创 学习SVM(二) 如何理解支持向量机的最大分类间隔

学习SVM(一) SVM模型训练与分类的OpenCV实现 学习SVM(二) 如何理解支持向量机的最大分类间隔 学习SVM(三)理解SVM中的对偶问题 学习SVM(四) 理解SVM中的支持向量(Support Vector)SVM算法在在1995年正式发表,在针对中小型数据规模的分类任务上有着...

2017-06-24 16:01:45 17849 12

原创 如何理解卷积神经网络中的权值共享

权值共享这个词最开始其实是由LeNet5模型提出来,在1998年,LeCun发布了LeNet网络架构,就是下面这个: 虽然现在大多数的说法是2012年的AlexNet网络是深度学习的开端,但是CNN的开端最早其实可以追溯到LeNet5模型,它的几个特性在2010年初的卷积神经网络研究中被广泛...

2017-06-23 19:53:08 33641 14

原创 理解交叉熵作为损失函数在神经网络中的作用

交叉熵的作用通过神经网络解决多分类问题时,最常用的一种方式就是在最后一层设置n个输出节点,无论在浅层神经网络还是在CNN中都是如此,比如,在AlexNet中最后的输出层有1000个节点: 而即便是ResNet取消了全连接层,也会在最后有一个1000个节点的输出层: 一般情况下,最后一个输出...

2017-06-18 15:59:10 44717 22

原创 理解深层神经网络中的迁移学习及TensorFlow实现

什么是迁移学习在深度学习中,所谓的迁移学习是将一个问题A上训练好的模型通过简单的调整使其适应一个新的问题B。在实际使用中,往往是完成问题A的训练出的模型有更完善的数据,而问题B的数据量偏小。而调整的过程根据现实情况决定,可以选择保留前几层卷积层的权重,以保留低级特征的提取;也可以保留全部的模型,只...

2017-06-17 22:04:30 11130 17

原创 TensorFlow基本操作 实现卷积和池化

之前已经提到过图像卷积的操作和意义,并且用OpenCV中的filter2D函数实现了一些例子。OpenCV中的filter2D函数仅仅是用一个卷积核去卷积单个的图像矩阵,而在TensorFlow中,卷积操作主要用于CNN中的卷积层,所以输入不再仅仅局限与三维或一维的矩阵,卷积核的个数不再是单个,输...

2017-06-17 13:47:41 7607 6

原创 TensorFlow 图像预处理(二) 图像翻转,图像色彩调整

图像翻转 tf.image.flip_up_down:上下翻转 tf.image.flip_left_right:左右翻转 tf.image.transpose_image:对角线翻转 除此之外,TensorFlow还提供了随机翻转的函数,保证了样本的样本的随机性: tf.image....

2017-06-12 15:55:36 20296 3

原创 TensorFlow 图像预处理(一) 图像编解码,图像尺寸调整

TensorFlow提供了几类图像处理函数,下面介绍图像的编码与解码,图像尺寸调整。编码与解码图像解码与编码:一张RGB三通道的彩色图像可以看成一个三维矩阵,矩阵中的不位置上的数字代表图像的像素值。然后图像在存储时并不是直接记录这些矩阵中的数字,而是经过了压缩编码。所以将一张图像还原成一个三维矩阵...

2017-06-12 11:34:22 31116 6

原创 如何打开ipynb文件

最近在学习《TensorFlow 实战GoogLe深度学习框架》这本书,发现里面提供的源码后缀是.ipynb,而不是.py,那么我们应该怎么打开.ipynb后缀的文件呢? ipynb,即ipython notebook,需要用ipython notebook打开,IPython Notebook...

2017-06-11 22:43:04 86460 5

原创 TensorFlow 组合训练数据(batching)

在之前的文章中我们提到了TensorFlow TensorFlow 队列与多线程的应用以及TensorFlow TFRecord数据集的生成与显示,通过这些操作我们可以得到自己的TFRecord文件,并从其中解析出单个的Image和Label作为训练数据提供给网络模型使用,而在实际的网络训练过程中...

2017-06-11 14:35:13 11861 0

原创 TensorFlow TFRecord数据集的生成与显示

TFRecord   TensorFlow提供了TFRecord的格式来统一存储数据,TFRecord格式是一种将图像数据和标签放在一起的二进制文件,能更好的利用内存,在tensorflow中快速的复制,移动,读取,存储 等等。   TFRecords文件包含了tf.train.Example...

2017-06-10 13:11:57 24181 49

原创 TensorFlow 队列与多线程的应用

深度学习的模型训练过程往往需要大量的数据,而将这些数据一次性的读入和预处理需要大量的时间开销,所以通常采用队列与多线程的思想解决这个问题,而且TensorFlow为我们提供了完善的函数。 实现队列 在Python中是没有提供直接实现队列的函数的,所以通常会使用列表模拟队列。 而TensorF...

2017-06-09 10:20:20 2267 0

原创 Python实现队列数据结构

队列是一种应用广泛的数据结构,是一种只允许在一端进行插入操作,另一端进行删除操作的线性表,具有先进先出(First-In-First-Out)的原则。队列的两种主要操作是:向队列中插入新元素和删除队列中的元素。插入操作也叫做入队,删除操作也叫做出队。入队操作在队尾插入新元素,出队操作删除队头的元素...

2017-06-08 12:07:21 1055 0

原创 Python3 一些与C++不一样的运算符

Python逻辑运算符 逻辑“与”运算符 and 逻辑表达式 a and b 如果变量a,b中有一个是Flase,那么a and b为Flase 如果变量a,b都为True,那么a and b为True逻辑“或”运算符 or 逻辑表达式 a or b 如果变量a,b中最多只有一个是...

2017-06-05 16:39:53 869 0

转载 当你的深度学习模型走进死胡同,问问自己这5个问题

深度学习是一项庞大又复杂的工程,在建立深度学习模型时,走进死胡同被迫从头再来似乎是常事。 近日,Semantics3网站的联合创始人Govind Chandrasekhar在官方博客上发表了一篇文章,讲述了程序员在解决深度学习问题时的应该自问的五个问题。 Semantics3是一家2012年成...

2017-06-05 11:36:34 1118 0

原创 Python3 import 与 from...import

在 python 中,用 import 或者 from…import 来导入相应的模块。模块其实就是一些函数和类的集合文件,它能实现一些相应的功能,当我们需要使用这些功能的时候,直接把相应的模块导入到我们的程序中。导入 sys 模块import sys print ('命令行参数为:&#...

2017-06-04 22:46:18 7586 0

原创 从AlexNet理解卷积神经网络的一般结构

2012年AlexNet在ImageNet大赛上一举夺魁,开启了深度学习的时代,虽然后来大量比AlexNet更快速更准确的卷积神经网络结构相继出现,但是AlexNet作为开创者依旧有着很多值得学习参考的地方,它为后续的CNN甚至是R-CNN等其他网络都定下了基调,所以下面我们将从AlexNet入手...

2017-06-04 17:58:37 75680 67

原创 时间复杂度的计算

如果我们想验证一段代码的效率,一个最直接的办法就是编出来之后运行一下,这个方法称为事后统计方法,但是这个方法存在着非常大的弊端,比如我们需要时间编写代码,而代码写完后如果不符合要求需要重新编写;测试的方法会受到硬件和内存占有率的影响等等。所以为了让代码的评估更加规范和科学,我们更多的使用事前分析估...

2017-06-02 11:15:26 2270 1

原创 理解激活函数在神经网络模型构建中的作用

什么是激活函数在生物学家研究大脑神经元工作机理时,发现如果一个神经元开始工作时,该神经元是一种被激活的状态,我想着大概就是为什么神经网络模型中有一个单元叫做激活函数。 那么什么是激活函数呢,我们可以从逻辑回归模型开始理解它,下图是一个Logistic回归分类器: 在上图中我们发现,Lo...

2017-06-01 12:02:36 10309 7

提示
确定要删除当前文章?
取消 删除