自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

chaibubble

但行好事,莫问前程

原创 Ubuntu 文件同步工具 rsync

cp和scp是ubuntu中文件拷贝常用的两个命令,一般在同一台服务器上我们是用cp命令,跨服务时使用过scp命令,但是如果做文件同步的话,rsync要比上述两个命令更好用一些,跨不跨服务器都是如此。 因为rsync可以只同步需要更新的文件,而不是将所有的指定路径内的文件都拷贝一份,然后再目标路径...

2020-08-02 17:54:58 159 0

原创 Ubuntu nfs配置

NFS 即网络文件系统(Network File-System),可以通过网络让不同机器、不同系统之间可以实现文件共享。通过 NFS,可以访问远程共享目录,就像访问本地磁盘一样。NFS 只是一种文件系统,本身并没有传输功能,是基于 RPC(远程过程调用)协议实现的,采用 C/S 架构。 ubunt...

2020-08-02 17:42:08 103 0

原创 pip 换国内源

pip在安装python包时,默认使用的是国外的源,所以有时下载会比较慢,可以在install时将源指定为国内的源,比如阿里源或者清华源, 临时使用 pip install -i https://pypi.tuna.tsinghua.edu.cn/simple some-package 设为默认...

2020-07-20 01:08:18 178 0

原创 pip install时timeout设置

在使用pip安装python相关包时,常常会由于网络问题,导致超时,下载失败,而且换成国内源的时候,也有可能出现这种情况,比如使用pip安装pytorch的时候,这个时候可以通过修改timeout加长download的下载时间,缓解超时的问题: 默认timeout:不指定timeout时15s, ...

2020-07-20 00:50:29 401 0

原创 目标检测(object detection)系列(十三)CenterNet:no Anchor,no NMS
原力计划

目标检测系列: 目标检测(object detection)系列(一) R-CNN:CNN目标检测的开山之作 目标检测(object detection)系列(二) SPP-Net:让卷积计算可以共享 目标检测(object detection)系列(三) Fast R-CNN:end-to-e...

2020-07-05 22:40:09 544 0

原创 MOT:FairMOT
原力计划

简介 《FairMOT:A Simple Baseline for Multi-Object Tracking》是一个online的多目标跟踪(MOT)算法,基于TBD(Traking-by-Detection)的策略,FairMOT主要就是基于JDE做的改进,可以简单的理解为,FairMOT是将...

2020-06-26 19:29:52 532 0

原创 VSCode:断点调试技巧Hit Count

在代码调试过程中,有一些复杂的代码需要之前运行一段过程后才到想要调试的阶段,而在这之前,我们希望程序执行到断点时不要中断,而是跳过,此时就需要更复杂的断点调试功能,比如Hit Count。 最简单的例子就是在一个for循环中,指定要出触发的次数 for i in range(1000): ...

2020-05-23 21:52:33 605 0

原创 MOT:通用性能评价标准

简介: MOTChallenge是多目标跟踪领域最为常用的benchmark,其中2D MOT15,3D MOT15,MOT16,MOT17,MOT20都是多目标跟踪领域常用的数据集。 下面我们按照MOTChallenge中的评价标准进行介绍,当然MOTChallenge也主要参考《Evaluat...

2020-05-22 21:54:41 492 0

原创 Ubuntu oh-my-zsh与autosuggestions配置

shell的类型有很多种,linux下默认的是bash,而bash的界面过于单调,命令提醒功能也不友好,zsh+autosuggestions就是为了让界面变得更美观,使用变得更高效。而oh-my-zsh在其中的作用就是让zsh的配置变得简单易用,并提供了大量的主题以供选择。 在Mac os和Li...

2020-04-07 00:26:36 513 0

原创 Ubuntu创建用户 adduser和useradd

adduser和useradd的区别 初次接触Ubuntu的用户管理内容时,可能都会有这样的疑惑,Ubuntu中adduser和useradd都可以用来创建用户,关于二者的区别,网路上也有很多介绍,但是这些介绍有些并不准确,下面对二者的区别做一个对比: 首先可以确定的一点是,adduser和us...

2020-04-06 22:52:17 405 0

原创 MOT:Towards Real-Time Multi-Object Tracking

简介 《Towards Real-Time Multi-Object Tracking》是一个online的多目标跟踪(MOT)算法,基于TBD(Traking-by-Detection)的策略,在之前的MOT算法中惯用的策略就是先检测,得到视频中目标bbox,然后再考虑前后帧的匹配策略,为了更好...

2020-04-06 21:48:55 1446 0

原创 Python使用pipreqs分析项目依赖

Python的程序一般需要很多依赖包,如果想要把这些包导出成requirements.txt的形式,常规的方法是直接使用pip freeze命令: pip freeze > requirements.txt 随后,在另一个环境中使用: pip install -r requirement...

2020-03-23 18:29:06 562 0

原创 Python 使用@property

Python中的@property装饰器作用有两个: 一个是动态更新功能 一个是定义只读属性 首先是动态更新功能,类内加了@property装饰器的函数具备动态更新功能,类似于一种回调函数,只要函数内涉及的变量有变化,该函数就会执行回调,动态更新。 也是因为这种特性,所以@property修饰...

2020-03-19 12:16:23 113 0

原创 MOT:SORT

简介 SORT是一个快速的在线的多目标跟踪(MOT)算法,基于TBD(Traking-by-Detection)的策略,这些特性决定了SORT实用性非常好,SORT的论文是《SIMPLE ONLINE AND REALTIME TRACKING》,发表于2016年,SORT在当时对MOT领域起到了...

2019-10-06 23:08:24 699 0

原创 目标检测(object detection)扩展系列(三) Faster R-CNN,YOLO,SSD,YOLOv2,YOLOv3在损失函数上的区别

Faster R-CNN,YOLO和SSD通用目标检测领域有着奠基一般的作用, 而YOLOv2和YOLOv3由于其灵活易用的特性,在工业界一直很受欢迎,下面这篇文章主要想从损失函数的角度集中讨论下这几个主流框架的区别。

2019-10-04 22:38:46 1424 3

原创 交叉熵损失(Cross Entropy)求导

Cross Entropy是分类问题中非常常见的一种损失函数,我们在之前的文章提到过二值交叉熵的证明和交叉熵的作用,下面解释一下交叉熵损失的求导。

2019-10-03 00:29:52 3057 2

原创 关于梯度下降优化算法的概述

梯度下降算法是最流行的优化算法之一,并且是迄今为止最常见的优化神经网络的方法。同时,每个最先进的深度学习库包含各种梯度下降优化算法的实现,(例如: lasagne,caffe和keras)。然而,这些算法通常用作黑盒优化器,因为它们的优点和缺点的实际解释很难实现。 本文旨在为您提供不同的梯度下降优...

2019-09-29 22:08:38 225 0

原创 Python3 基本数据结构总结

简介 Python3基本数据结构有列表(list),元组(tuple),字典(dictionary)和集合(set)四种。

2019-09-22 19:53:22 447 0

原创 图像生成:SaGAN

简介 SaGAN,即生成对抗模型,是图像生成领域内的一种重要方法,它在2014年由Goodfellow提出,它的论文是《Generative Adversarial Networks》,GAN是在训练两个相互对抗的网络,一个生成器(Generator)和一个判别器(Descriminator)。当...

2019-09-19 19:16:20 860 0

原创 图像生成:GAN

GAN,即生成对抗模型,是图像生成领域内的一种重要方法,它在2014年由Goodfellow提出,它的论文是《Generative Adversarial Networks》,GAN是在训练两个相互对抗的网络,一个生成器(Generator)和一个判别器(Descriminator)。当训练达到平...

2019-09-16 00:07:41 4346 0

原创 C++ using用法

using作用: 引入命名空间,指定别名,在子类中引用基类的成员。

2019-09-10 20:43:46 1299 0

原创 人脸检测:SSH

SSH是一个用于人脸检测的one-stage检测器,提出于2017年8月,在当时取得了state-of-art的效果,论文是《SSH: Single Stage Headless Face Detector》,SSH本身的方法上没有太多新意,更多的是在把通用目标检测的方法往人脸检测上应用。

2019-09-06 19:33:30 227 0

原创 目标检测(object detection)扩展系列(二) OHEM:在线难例挖掘

OHEM(Online Hard Example Mining)是一种在线的难例挖掘方法,它的论文是《Training Region-based Object Detectors with Online Hard Example Mining》,从时间上看它在Faster R-CNN的后面,但是文...

2019-09-05 22:31:50 1198 0

原创 人脸检测:FaceBoxes

FaceBoxes是一个足够轻量的人脸检测器,由中国科学院自动化研究所和中国科学院大学的研究者提出,旨在实现CPU下的实时人脸检测,FaceBoxes论文是《FaceBoxes: A CPU Real-time Face Detector with High Accuracy》。

2019-09-04 23:42:40 570 0

原创 Caffe工厂模式解析

Caffe有五个基本组件,分别是Blob,Solver,Net,Layer和Proto,其中Solver和Layer使用了工厂模式,下面以Slover为例说明下。 Solver的工厂模式在注册和调用的过程中体现,所以在说明工厂模式之前,我们首先要弄明白Solver在Caffe内部是如何被使用的。

2019-09-03 12:03:37 621 1

原创 C++工厂模式

工厂模式分为3种,即简单工厂模式、工厂方法模式、抽象工厂模式,C++的工厂模式主要利用到虚函数。 简单工厂模式 工厂方法模式 抽象工厂模式

2019-08-28 23:40:40 1752 0

原创 目标检测(object detection)系列(十二) CornerNet:anchor free的开端

过去的目标检测算法,two-stage方法从Faster R-CNN开始,one-stage方法从SSD开始,都无一例外的引入了anchor,anchor先验的引入使网络不需要从0直接预测Bounding box,这有利于目标检测器得到更好的效果。但是随着Anchor box的逐渐增多,它变成了目...

2019-08-25 18:09:16 1317 0

原创 目标检测(object detection)系列(十一) RetinaNet:one-stage检测器巅峰之作

在RetinaNet之前,目标检测领域一个普遍的现象就是two-stage的方法有更高的准确率,但是耗时也更严重,比如经典的Faster R-CNN,R-FCN,FPN等,而one-stage的方法效率更高,但是准确性要差一些,比如经典的YOLOv2,YOLOv3和SSD。而RetinaNet的出...

2019-08-24 17:33:22 1842 3

原创 目标检测(object detection)系列(十) FPN:用特征金字塔引入多尺度

SSD算法证明了多层分支对于目标检测的有效性,在此之前two-stage的目标检测方法已经优化改进过很多代,但是一直没有加入多尺度的方法。终于在FPN中,two-stage引入了多尺度,并且在SSD多层分支方法的基础上进一步改进,提出了特征金字塔网络。FPN的论文是《Feature Pyramid...

2019-08-22 14:12:15 2625 2

原创 人脸检测通用评价标准

简介 人脸检测任务应该如何评价 评价标准 二分类的精准率和召回率 人脸检测是目标检测的一个特例,因为目标类别只有一类,剩下的都是背景,所以人脸检测评价标准中会用到些二分类问题的评价,在这里先提一下。 二分类问题最常用的就是精准率和召回率: 精准率代表着预测为正的样本中有多少是正确的; 召回率代表...

2019-08-21 12:21:19 1903 0

原创 目标检测(object detection)系列(九) YOLOv3:取百家所长成一家之言

取百家所长成一家之言是一句书面意思上绝对褒义的话,形容一个论文却有些许的尴尬,但是YOLOv3确实是这样,没什么大的改动和创新点,而是融合借鉴了很多在其他的方案,最后效果还是很好的,文章中自己也提到了:“We made a bunch of little design changes to mak...

2019-08-18 18:54:41 2506 1

原创 如何计算CNN感受野、计算量和模型大小

下面以最经典的AlexNet模型为例子,计算感受野,模型计算量和大小(内存)。下面这张图是AlexNet的结构图,看起来比较直观。 感受野 感受野是检测和分割任务中比较重要的指标,它是一个逐层叠加的过程,计算到最后一层的卷积特征图输出上,它的计算公式是: RFi=RFi−1+(kernelsiz...

2019-08-17 15:45:19 1509 1

原创 如何理解扩张卷积(dilated convolution)

扩张卷积(Dilated Convolution)也被称为空洞卷积或者膨胀卷积,是在标准的卷积核中注入空洞,以此来增加模型的感受野(reception field)。相比原来的正常卷积操作,扩张卷积多了一个参数: dilation rate,指的是卷积核的点的间隔数量,比如常规的卷积操作dilat...

2019-08-16 18:35:15 8628 9

原创 目标检测(object detection)扩展系列(一) Selective Search:选择性搜索算法

在Faster R-CNN算法之前,R-CNN,SPP-Net和Faster R-CNN这些方法中,都用到了SS(Selective Search)算法,它其实是一种区域建议算法为后续的检测任务提供候选框,SS的论文是[《Selective Search for Object Recognitio...

2019-08-14 15:53:31 716 0

原创 目标检测(object detection)系列(六) SSD:兼顾效率和准确性

SDD出现之前,主流的CNN目标检测模型分别是Faster R-CNN和YOLO,Faster R-CNN作为two-stage的代表,具有state of the art的准确性,但是速度偏慢,做不到实时。。YOLO使得目标检测任务one-stage就能完成,在效率上有了明显改善,但是准确性上确...

2019-08-11 22:06:08 1449 0

原创 目标检测(object detection)系列(五)YOLO:目标检测的另一种打开方式

从时间轴上看,YOLO(YOLO v1)的提出在R-CNN,SPP-Net,Fast R-CNN和Faster R-CNN之后,论文题目是《You Only Look Once: Unified, Real-Time Object Detection》,从某种意义上说,YOLO的提出,从另一各方面...

2019-08-09 13:12:01 1537 0

原创 Octave Convolution原理与Caffe实现

前言 OctaveNet网络paper是《Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octave Convolution》,是CVPR2019中的一篇论文。 OctaveNet...

2019-07-27 15:29:58 566 4

原创 Caffe实现上采样(upsample)方法总结

引言 CNN的下采样(subsample)在几乎所有的模型结构中都会出现,比如stride>1的卷积操作,pooling操作,都会减少特征图的长宽,起到下采样的效果。与之相对的就是上采样(upsample)操作了,顾名思义,上采样在CNN模型中的作用上增大特征图的长宽,比如都变为原来的2倍。...

2019-07-13 17:17:33 8150 10

原创 年龄估计:Ordinal Regression

前言 年龄估计任务 年龄估计,顾名思义就是要从人脸图片中估计出对象的年龄,一般情况下是一个整数,而不是年龄段(中年,青年)和小数(25.5),这一点符合人的常理,我们在提及自己的年龄时,也不会说“我今年25.5岁”。 在人脸应用中,年龄估计一般会作为人脸属性识别中的一个属性,就像下面这张图呈现出的...

2019-06-09 17:02:03 2811 2

原创 轻量化网络:SqueezeNet模型网络结构

SqueezeNet是轻量化网络的代表结构之一,其针对ImageNet数据集分类任务的模型大小只有4.8M,这还包括了最后512*1000分类的全连接层。 An Analysis of Deep Neural Network Models for Practical Applications ...

2018-10-14 12:26:56 1673 0

提示
确定要删除当前文章?
取消 删除